
QRPp Oct. 2016 50

Arduino for the Terrified
Part 3

by
Jack Purdum, Ph.D.

W8TEE
In this part of the series, we want to connect an LCD display to your Arduino
so you can display output without requiring the use of your PC. Obviously,
we’re still using the PC to develop the programs, but at least we can see
things displayed on the LCD directly. In Part 2, I suggested that you get a
16x2 LCD display that uses the I2C interface. The reason is because the I2C
interface only uses two I/O lines to use the display. If you use the standard
LCD parallel interface, it ties up 6 I/O lines, sometimes more.

Setting Up an I2C LCD Display
I like the Yourduino display mentioned in Part 2 because it’s fairly inexpensive
and its vendor has sample Arduino programs, also called sketches, that you
can experiment with. Figure 1 shows the back of the display and the I2C
interface board. Note it only uses four wires: 1) ground (GND), 2) power
(VCC, 5V), 3) data (SDA), and 4) clock (SCL). The blue pot control is used
to adjust the LCD display’s backlight. If you don’t see anything displayed or a
16x2 matrix of “blocks”, just use a small screwdriver

 Figure 1. The back of the I2C LCD display

QRPp Oct. 201651

to adjust it. (It’s easier to do when something is printed on the display. Once
it’s set, you won’t have to mess with it again.)

Okay, so where do the other ends of the display attach to the Arduino? Well,
the power connections should be pretty obvious. The clock (SCL) and data
(SDA) lines aren’t obvious. To help you along, Figure 2 shows the pinout for
the Arduino Nano. (If you are using an Arduino Uno or similar, Google
“Arduino Uno pinout” and you’ll find a similar drawing.)

If you look closely at Figure 2, you can see purple numbers displayed on the
outer-most edges of the figure. These are the logical pin numbers that are
used by the bootloader and some internal IDE functions. Lined up with each
of those pins numbers are the capabilities that have been assigned to that pin.
For example, in the upper-left corner you see a purple 1 and a purple 0
directly below it. If you look to the right of each of those purple numbers, you
will see light blue fields where 1 is associated with TXD and 0 is associated
with RXD. What this means is the logical pins 0 and 1 are used by the Serial
monitor to transmit (TXD) and receive (RXD) data from the Serial monitor. In
other words, the USB cable uses these two logical pins to form a

Figu. The pinouts for the Arduino Nano

communications link with the PC. Note this link is used by the IDE to move
code from your PC into the Arduino during a compile. Likewise, if you use
the Serial object as an input device like we did in the game in Part 2, those

QRPp Oct. 2016 52

two I/O lines need to be kept free.

While we’re in the neighborhood, note that logical pins 2 and 3 have been
assigned INT0 and INT1 (i.e., the pink fields). These are external interrupt
pins. While we’re not doing anything with those pins yet, I point it out now
because I always try to avoid dedicating “normal” I/O work to those pins just
in case I need to use an interrupt somewhere down the line in the project.

A lot of sample code you’ll find online uses the two interrupt pins for
connecting a parallel interfaced LCD display to the Arduino. If you see this,
just move those two lines from the display to some other pins and reflect that
in your code. For example, the Arduino user site has this code for creating an
LCD display:

LiquidCrystal lcd(12,11,5,4,3,2);

which means the interrupt pins are being used for the display. If pins 6 and 7
aren’t being used in the program, you can change the statement to:

LiquidCrystal lcd(12,11,7,6,5,4);

which makes it easier to add an interrupt routine if it’s needed later.

Going back to Figure 2, look for the purple (logical) pins 18 and 19 on the
right side of the figure. To the right of those numbers are A4 and A5 as
displayed in green fields. These ‘A’ designations mean that those pins can be
used for reading an analog device. The ADC (Analog to Digital Converter)
capability within the Arduino is a 10-bit converter, so the voltage readings are
mapped to the values 0-1023.

Now look to the left for those same two pins and you will see two light blue
fields with SCL and SDA. Wait a minute...didn’t you just see that in Figure 1?
Yep, so those are the two pins where you connect the SCL and SDA lines
from the I2C LCD display to the Arduino. If you look three pins “higher”
from A4 and A5, you will see a 5V pin which provides a power source for the
display. Two pins above that is a GND connection.

QRPp Oct. 201653

Keep in mind that all of the Arduino pins are low current devices with about a
40mA max on each pin. As a rule, I try to run at about half that power level. If
you are using an LCD display using a parallel interface, you should put a
dropping resistor in each of those lines. Almost any value between 200-1000
ohms will work. Experience has taught me that all electronic devices run on
white smoke and once that white smoke gets out, it’s really hard to put it
back in. Moral: use dropping resistors even if the display seems to work
without them.

BTW, you can buy prototyping boards for the Nano that makes connecting
things much easier. Figure 3 shows an example. I’ve marked the 4 pins that
provide all of the I2C interface pins. As you might

Figure 3. Nano prototype board.

QRPp Oct. 2016 54

guess, the Nano fits into the large header sockets in the middle and all of the
board’s pins tie into the Nano I/O and other pins. You can also power the
board with a wall wart using voltages between 6V and 17V, although the
regulator can get a little toasty at the higher voltages. A 9V wall wart is a good
choice.

There is another nice feature of these prototype boards. As you may know,
there’s approximately a bazillion add-on boards, called shields, that can be
directly “plugged into” an Arduino Uno. (Go to eBay and type in “Arduino
Wifi shield” to see an example.) However, because the Nano uses a smaller
footprint, you can’t plug an Uno shield into a Nano.

Or can you?

If you look at the outer edge of the prototype board in Figure 3, you will see
empty holes for more pins. If you solder socket headers into these holes, an
Uno shield can plug directly into the sockets. This would allow you to use an
Uno shield with a Nano! For about $2 each, I bought several of these online.
I also bought an assortment of Dupont jumper wires (M-M, M-F, and F-F)
online to make connecting to the pins easy. See:

http://www.ebay.com/itm/120pcs-Dupont-Wire-Male-to-Male-Male-to-
Female-Female-to-Female-Jumper-Cable-/121868077477

An LCD Demo Program
Listing 1presents a short demo program using the I2C LCD display. I assume
you’ve connected the 4 wires to the display from the Nano. Figure 4 shows
my setup:

QRPp Oct. 201655

Figure 4. LCD and Nano protoype board

The first line in Listing 1 is a preprocessor #include directive, which is used to
access pre-written code and make it available to your program. In this case,
the program wants to access the code in the Wire library. When you installed
the Arduino software package, it automatically copied the Wire library into the
libraries subdirectory during the installation process. The angle brackets (‘<‘
and ‘>’) tell the compiler to look in the default library directory for this file,
and that’s exactly where you will find it. (If you used double quote marks
instead of the angle brackets, it would first look in the same directory where
the program you are writing is located on your disk.) You will also see in
Listing 1 that a second #include is used to access the
LiquidCrystal_I2Clibrary. Alas, this library is not automatically included
with the Arduino installation.

QRPp Oct. 2016 56

What is a Library?

A C programming library is simply a collection of functions that are designed
to perform a specific task. The Wire library is used to implement the I2C
progamming interface to the Arduino controllers. That library includes a bunch
of functions designed to make your life as a programmer easier. Likewise, the
LiquidCrystal_I2C library is used to interface to the LCD display using the
I2C interface. The third statement line in Listing 1, for example, creates the
lcd object, and the second statement line in setup() has a function,
lcd.begin(16, 2), that initializes (Step 1, remember?) the lcd object to work
with a 16x2 display.

However, since your installation doesn’t include the LiquidCrystal_I2C
library, how can you access it? Easy, go to the URL given right above the
#include directive, download the LiquidCrystal_I2C library into the
libraries subdirectory, and unzip it.

Installing a New Library

Unfortunately, installing a new library isn’t always the same for all libraries. If
you go to the URL given in Listing 1, the zip file is named
NewliquidCrystal_1.3.4.zip. When you unzip that file, it creates two
subdirectories: MACOSX for the Mac and NewLiquidCrystal for Windows.
I’m using windows, so that’s the subdirectory I want. If you look in that
directory, you will find 37 directories and files in it. If you are using Windows
Explore to look around on your disk system, use Organize --> Select All to
highlight all of the directories and files. Now do Organize --> Copy to copy
all of the files to the Windows copy buffer.

Now move to the libraries subdirectory of your installation. For example, if
you installed the IDE as I suggested in Part 1, you would go to:

C:\Arduino1.6.9\libraries

Once there, create a new directory named LiquidCrystal_I2C. When you
are done, you should see all of the original library subdirectories plus the new
one you just created. Now, move into the new LiquidCrystal_I2C directory
and select Organize --> Paste. This will copy those 37 items into the new
directory. Now you are all set you use the I2C library for your LCD. If you

QRPp Oct. 201657

have the IDE open, you must close and reopen it for the IDE to know about
the new library.

This process is pretty common for installing most new libraries, but the root
library name may or may not be close to the name of the ZIP file. However,
as a general rule, the library subdirectory name should match the header file
name in the program. For example, our #include directory uses
LiquidCrystal_I2C.h for the file name to be included. As a result, the directory
name is the same, but drops the “.h” from the file name. If you look inside that
directory, you will find the LiquidCrystal_I2C.h header file.

I don’t want to explain this any further right now. As you gain more
programming experience, all of this will make more sense. For now, just trust
me that it will work!

Listing 1. LCD Demo Program

#include <Wire.h> // Arduino IDE has
this library

// Must add: https://bitbucket.org/fmalpartida/new-
liquidcrystal/downloads
#include <LiquidCrystal_I2C.h>

// Some displays may use 0x3F instead of 0x27 for the I2C
device address
LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3,
POSITIVE);

char message[17]; // Max message is 16 chars
char spaces[17] = “ “; // 16 spaces to erase a line

void setup()
{
 int i;

 Serial.begin(9600);
 lcd.begin(16, 2); // initialize lcd for 16 chars 2
lines, backlight on

QRPp Oct. 2016 58

 // ——— Quick 3 blinks of backlight ——————-
 for (i = 0; i < 3; i++)
 {
 lcd.backlight();
 delay(250);
 lcd.noBacklight();
 delay(250);
 }
 lcd.backlight(); // finish with backlight on

 lcd.setCursor(0, 0); //Start at character 0 on line 0
 lcd.print(“QRP rules!”);
}

void loop()
{
 int charsRead;

 if (Serial.available() > 0) {
 lcd.setCursor(0, 1); // second line
 lcd.print(spaces);
 charsRead = Serial.readBytesUntil(‘\0’, message,
sizeof(message) - 1);
 message[charsRead] = NULL;
 lcd.setCursor(0, 1); // second line
 lcd.print(message);
 }
}

The Program
In the setup() function, we create the Serial object as we have before, and we
initialize the LCD display to support a 16 column by 2 line display. We then
enter a for loop to blink the display 3 times. A for loop has three parts to it,
each separated by a semicolon:

for (expression1 ; expression2 ; expression3)

expression1 sets the starting value for the loop. In this example, we set i to 0.
expression2 is usually a logical test of some kind. In this example, we are
testing the value of i to see if it is less that 3. If it is True that i is less than 3,

QRPp Oct. 201659

we execute the statements that are between the opening ({) and closing (})
for statement braces. In our program, the statements in for statement block
turn the backlight on, wait a quarter of a second, turn the backlight off, and
wait another quarter of a second. The program execution then immediately
goes to expression3.

expression3, i++, is a C idiom that takes the current value of a variable and
increments it by 1. Therefore, you could also write expression3 as:

i = i + 1;

However, since programmers are usually lazy, they prefer the shorter version.
Once i has been incremented, program control immediately goes back to
expression2 and asks if i is still less than 3. Since it is, another pass through
the for statement block is made. Control then goes to expression3...you get
the idea. Eventually, i will equal 3, at which time the test is logic False and
program control will go immediately to the next statement after the closing
brace (}) of the for statement block. In our program, the next statement turns
the backlight back on.

The next line after that sets the LCD cursor to the first character position on
the first line and the next statement displays a message on the display. Note: In
programming, almost all counting begins with 0, not 1. So the x-y coordinates
for the first character of the first line is 0,0. You’ll get used to is.

That’s it for setup().

loop()

In loop(), we are using the Serial object’s available() function again like we
did in Part 2, to see if the user has type anything into the Serial monitor.
However, this time we want the user to type in a short message to display on
the LCD rather than just a single letter. The first two statements simply place
the cursor on the second line and overwrite (i.e., erase?) anything that might
be on the second line of the display with spaces. (Near the top of the program
we defined a character array with 17 characters in it, but using only 16
spaces. We’ll explain the different numbers in a bit.)

The statement:

QRPp Oct. 2016 60

 charsRead = Serial.readBytesUntil(‘\n’, message,
sizeof(message) - 1);

uses a different Serial function to read what the user typed into the Serial
monitor. Notice that there are 3 arguments that are passed to the
readBytesUntil() function. The first argument, ‘\n’, tells the function: “I want
you to read characters into the Serial buffer until you see the newline
character (‘\n’).” The newline character is sent by the Serial monitor when the
user presses the Enter key or clicks the Send button.

The second argument says: “Once you see the newline character, I want you
to copy the contents of the Serial buffer into the char array named
message[].” The final parameter says: “Oh, by the way, if the user is an idiot
and tries to write more characters than will fit in message[], move a newline
character into the Serial buffer and then copy the contents into message[]
and go home.” The third argument, therefore, provides a means by which we
can avoid overflowing the message[] array. Overflowing any array is almost
always a train wreck. But what’s this sizeof stuff all about?

sizeof Operator

The sizeof operator is used to find out how many bytes of memory have been
allocated to a variable. So, if you wrote sizeof(message), it would return 17.
The reason is because each char data type takes 1 byte of memory. Since we
defined the message[] array to hold 17 chars, it returns 17. Suppose I define
vals[] as follows:

 int vals[17];
 Serial.print(sizeof(vals));

What would be displayed on the Serial monitor? It would display 34. The
reason is because each int data type takes 2 bytes of storage, so it would use
34 bytes of memory.

Going back to our statement:

 charsRead = Serial.readBytesUntil(‘\n’, message,
sizeof(message) - 1);

QRPp Oct. 201661

the third argument uses the sizeof() operator to get 17, but it then subtracts 1
to give the value of the third argument as 16. Why? Well, the display only
holds 16 characters, and we told the code to write the newline character as
the 17th character if they try to overflow the buffer. The problem is that
computers start counting at 0, not 1. This means the 17 array elements go
from 0 through 16, not 17. So, the 17th character actually lives at element 16
in the array (i.e., message[16]). The function returns the number of
characters that were read into the message[] array. At a maximum, the return
count for charsRead would be 16. If they typed in a shorter message, it
would be the number of characters they did type.

String Variables in C
We now want to take the contents of the message[] array and display it on
the LCD. To do that, we need to make what the user typed in look like a
string variable. A string variable is nothing more than a char array arranged
so it can be used in a textual context. For example, take the message we
displayed in setup(). Somewhere in memory, the compiler made enough room
for that message and it would look like:

 QRP rules!0

Note that at the end of the message there is a zero. If you look up the ASCII
code for 0, you will see it is defined as nul. nul is represented as a character
as ‘\0’. The backslash is used so the compiler knows it is nul, not the digit
character ‘0’ (i.e., zero). In C, any function that works with string data knows
that nul marks the end of the string. So if the function needs to read the
contents of a string variable, it just starts at the beginning and reads until it find
the nul character. (This is a lot more efficient than some other languages that
use string descriptor blocks at the front of the string data to describe its
length.)

With this in mind, look at the next line in the program:

 message[charsRead] = NULL;

The Arduino IDE defines NULL as ‘\0’. So what does the line do? Suppose
you wrote “Hello” on the Serial monitor and pressed Enter. The variable

QRPp Oct. 2016 62

charsRead would equal 5, since that’s how many characters you typed. So
the statement becomes:

 message[5] = NULL;

which means that you have written the nul string termination character into the
5th element of the message[] array. In memory, this would look like:

 H e l l o 0

 0 1 2 3 4 5 --> Element number in the
 message[]array

This now means that we can use message[] as a string variable in the
program. True, it’s still a char array, but because of the nul character at the
end, any function that expects string data can now use message[] as a string
variable.

As you no doubt figured out by now, the program then displays what you
typed onto the LCD array. The code then sends control back up to the first
statement to see if you typed something new into the Serial monitor. If not, the
program spins around in the loop waiting ‘til the cows come home...

Your assignment: Have the user type a number in the Serial monitor and you
display that number along with its square. That is, if they type in 5, you display
that and 25. Keep in mind that textual data from the Serial monitor is text, not
numbers, so you need to convert from text to numbers. To help you along,
take a look at the atoi() function. To find out about it, type in “atoi for C” into
your search engine.

If that’s too easy for you, use a different algorithm. I discovered by accident
the following algorithm to square a number:

The sum of n odd integers, starting with 1, equals the square of n.

Example: what is the square of 3? The three odd integers are:

square = 1 + 3 + 5 = 9

For 5:

square = 1 + 3 + 5 + 7 + 9 = 25

QRPp Oct. 201663

If you can implement this algorithm in code on the first try, you probably
aren’t going to learn much here!

Create some of your own programs and have fun!

Arduino for the Terrified,Part 4
by Jack Purdum, Ph.D., W8TEE

So, you have been experimenting with your Arduino and doing some
conversions of textual data to numbers, right? In this part, we’re going to
build a really simple code practice oscillator, but we’re going to use the
keyboard instead of a key or keyer. If you’ve used the digital modes,
you’ve already used this kind of setup. In this case, however, we’re
going to capture a message you type into the Serial monitor and display it
on the LCD display. We’re also going to generate an audible tone in
Morse code that matches the character being sent. So the real purpose
here is to add a simple external device, a piezo buzzer, and show a little
more programming with the LCD display. Also, this isn’t a bad way to
learn Morse code...listening and seeing at the same time.

[sidebar]
I learned Morse code the wrong way. Back when I got my license in 1954,
you had to know Morse to get your Novice license. So, I sat down and
memorized the code one letter at a time, starting with ‘A’. I didn’t
realize it at the time, but to figure out the difference between a ‘B’ and
a ‘D’, I was counting dits in my head and then writing the letter down
on paper.

This approach pretty much dooms you to around 15wpm, max.

If you’re in the process of learning Morse, or you want to improve your
speed, the method used by Learn CW Online (lcwo.net) is the way to go.
Their approach is for you to pick a target speed that you would ultimately
like to be able to receive. In my case, I want to be able to receive at
30wpm, so that’s my target speed. What’s interesting is that they start
you out at that rate, but they place a large time delay between characters.
(You have control over that delay.) What this approach forces you to do
that I didn’t do was listen to the rhythm of the characters rather than
counting dits and dahs. As you become more comfortable at that pace,
you reduce the time gap between letters. Eventually, with some practice,
you’ll hit your target speed. This kind of encoding is modeled after
Farnsworth encoding and is more common than you think. W1AW, for
example, uses Farnsworth encoding when practice speeds exceed 18wpm.

QRPp Oct. 2016 64

Anyway, the application that lcwo uses is free, so you might give it a try if
you’re learning or just want to increase your speed.
[end sidebar]

To perform the experiment in this part, you’ll have to cough up enough
cash to buy a 5V piezo buzzer. I had one laying around here that was
mounted on a small board, but you can find them pretty cheap:

Figure 1. LCD display and piezo buzzer.

QRPp Oct. 201665

http://www.ebay.com/itm/10Pcs-5V-Active-Piezo-Electronic-DC-Buzzer-Alarm-
Speaker-for-Arduino-85db-/172189503879
hash=item28174b5187:g:TN8AAOSw2GlXJk0N

This is a domestic company that sells 10 for at $0.65 a piece, including shipping. Just
make sure it’s a 5V buzzer and that it doesn’t draw over 30mA or so. If it draws more
than that, you may have to put a resistor in line with the buzzer. Figure 1 shows my
setup. The LCD display hookup is unchanged from

the last program in Part 3. You can tie the buzzer to almost any pin you wish. I used pin
9 because...well, I don’t know why...I just did. I connected the other buzzer lead to +5V.
I did this to show you that turning it on actually requires pulling the I/O pin LOW,
which may be different than the way you’d normally think about it. You can do it either
way. Listing 1 shows the complete source code.

List 1. Code practice oscillator
#include <Wire.h>
#include <LiquidCrystal_I2C.h>

#define SCREENWIDTH 16 // Chars on one line of LCD
#define WPM 20
#define FREQ 700
#define MAXMSGLENGTH 128

char msg[MAXMSGLENGTH + 1]; // Don’t forget the NULL
char spaces[SCREENWIDTH + 1];

int ditlen = 1200 / WPM;

const int LEDPIN = 13; // blink the LED for now...
const int TONEPIN = 9; // tone pin

char letterTable[] = { // Morse coding
 0b101, // A
 0b11000, // B
 0b11010, // C
 0b1100, // D
 0b10, // E
 0b10010, // F
 0b1110, // G
 0b10000, // H
 0b100, // I
 0b10111, // J
 0b1101, // K

QRPp Oct. 2016 66

 0b10100, // L
 0b111, // M
 0b110, // N
 0b1111, // O
 0b10110, // P
 0b11101, // Q
 0b1010, // R
 0b1000, // S
 0b11, // T
 0b1001, // U
 0b10001, // V
 0b1011, // W
 0b11001, // X
 0b11011, // Y
 0b11100 // Z
};

char ntab[] = {
 0b111111, // 0
 0b101111, // 1
 0b100111, // 2
 0b100011, // 3
 0b100001, // 4
 0b100000, // 5
 0b110000, // 6
 0b111000, // 7
 0b111100, // 8
 0b111110 // 9
};

LiquidCrystal_I2C lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE);

/*****
 Purpose: to cause a delay in program execution

 Paramter list:
 unsigned long millisWait // the number of millseconds to wait

 Return value:
 void
*****/
void mydelay(unsigned long millisWait)
{
 unsigned long now = millis();

QRPp Oct. 201667

 while (millis() - now < millisWait)
 ; // Twiddle thumbs...
}

/*****
 Purpose: to send a Morse code dit

 Paramter list:
 void

 Return value:
 void

 CAUTION: Assumes that a global named ditlen holds the value for dit spacing
*****/
void dit()
{
 digitalWrite(LEDPIN, HIGH);
 digitalWrite(TONEPIN, LOW);
 mydelay(ditlen);
 digitalWrite(LEDPIN, LOW);
 digitalWrite(TONEPIN, HIGH);
 mydelay(ditlen);

}

/*****
 Purpose: to send a Morse code dah

 Paramter list:
 void

 Return value:
 void

 CAUTION: Assumes that a global named ditlen holds the value for dit spacing
*****/
void dah()
{
 digitalWrite(LEDPIN, HIGH);
 digitalWrite(TONEPIN, LOW);
 mydelay(3 * ditlen);
 digitalWrite(LEDPIN, LOW);

QRPp Oct. 2016 68

 digitalWrite(TONEPIN, HIGH);
 mydelay(ditlen);
}

/*****
 Purpose: to provide spacing between letters

 Paramter list:
 void

 Return value:
 void

 CAUTION: Assumes that a global named ditlen holds the value for dit spacing
*****/
void lspace()
{
 mydelay(3 * ditlen);
}

/*****
 Purpose: to provide spacing between words

 Paramter list:
 void

 Return value:
 void

 CAUTION: Assumes that a global named ditlen holds the value for dit spacing
*****/
void space()
{
 mydelay(7 * ditlen);
}

/*****
 Purpose: to send a Morse code character

 Paramter list:
 char code the code for the letter to send

 Return value:
 void

QRPp Oct. 201669

*****/
void SendCode(char code)
{
 int i;

 for (i = 7; i >= 0; i—)
 if (code & (1 << i))
 break;

 for (i—; i >= 0; i—) {
 if (code & (1 << i))
 dah();
 else
 dit();
 }
 lspace();
}

/*****
 Purpose: to send a Morse code character

 Paramter list:
 char myChar The character to be sent

 Return value:
 void
*****/void send(char myChar)
{
 if (isalpha(myChar)) {
 if (islower(myChar)) {
 myChar = toupper(myChar);
 }
 SendCode(letterTable[myChar - ‘A’]); // Make into a zero-based array index
 return;
 } else if (isdigit(myChar)) {
 SendCode(ntab[myChar - ‘0’]); // Same deal here...
 return;
 }
 switch (myChar) { // Non-alpha and non-digit characters
 case ‘ ‘:
 case ‘\r’:
 case ‘\n’:
 space();

QRPp Oct. 2016 70

 break;
 case ‘.’:
 SendCode(0b1010101);
 break;
 case ‘,’:
 SendCode(0b1110011);
 break;
 case ‘!’:
 SendCode(0b1101011);
 break;
 case ‘?’:
 SendCode(0b1001100);
 break;
 case ‘/’:
 SendCode(0b110010);
 break;
 case ‘+’:
 SendCode(0b101010);
 break;
 case ‘-’:
 SendCode(0b1100001);
 break;
 case ‘=’:
 SendCode(0b110001);
 break;
 case ‘@’:
 SendCode(0b1011010);
 break;
 default:
 lcd.setCursor(0, 1);
 lcd.print(“unknown char”);
 break;
 }
}
//===
void setup()
{
 pinMode(LEDPIN, OUTPUT);
 pinMode(TONEPIN, OUTPUT);
 digitalWrite(TONEPIN, HIGH);

 memset(spaces, ‘ ‘, sizeof(spaces)); // Fill array with space character

 Serial.begin(9600);

QRPp Oct. 201671

 lcd.begin(SCREENWIDTH, 2);
}

void loop()
{
 int charsRead;
 int index;

 if (Serial.available() > 0) {
 lcd.setCursor(0, 0);
 lcd.print(spaces);
 lcd.setCursor(0, 1);
 lcd.print(spaces);

 charsRead = Serial.readBytesUntil(‘\n’, msg, sizeof(msg) - 1);
 msg[charsRead] = NULL;
 Serial.println(msg);
 index = 0;
 ShowChar(msg, charsRead);
 while (msg[index]) {
 ShowChar(msg, 0);
 send(msg[index]);
 digitalWrite(TONEPIN, HIGH);
 index++;
 }
 }
}

void ShowChar(char s[], int whichOne)
{
 static int index;
 char temp[SCREENWIDTH + 1];

 if (whichOne != 0) {
 index = 0;
 }
 if (index < SCREENWIDTH) {
 if (s[index] < 32) // Probably null
 return;
 lcd.setCursor(index, 0);
 lcd.print(s[index++]);
 } else {
 memcpy(temp, &s[index - SCREENWIDTH], SCREENWIDTH);
 temp[SCREENWIDTH] = ‘\0’;

QRPp Oct. 2016 72

 lcd.setCursor(0, 0);
 lcd.print(temp);
 index++;
 }
 }
}

#define Preprocessor Directive

The program begins with a series of preprocessor directives for symbolic constants
used in the program. For example:

#define SCREENWIDTH 16 // Chars on one line of LCD

A #define is a preprocessor directive that causes a textual replacement in the source
code. So, anywhere you see SCREENWIDTH in the program, the proprocessor
replaced that word with the digit characters 16. Most people find it easier to read and
understand the symbolic constant SCREENWIDTH than a magic number like 16.

Still, since we know we’re using a 16x2 display, why not just use 16 instead of
SCREENWIDTH? Go back and count how many times you see SCREENWIDTH used
in the program. There are six places where it is used. So, now you upgrade to a 20x4
display. Which is easier: Change SCREENWIDTH from 16 to 20 in the preprocessor
directive once at the top of the file, or search-and-replace six times in the file? Which is
more error-prone?

Also, it’s been shown that when someone is doing a search-and-replace of 16 with 20,
the programmer is sorely tempted to do a global Replace All action. That can lead to
disastrous consequences. For example, suppose software to mill a canon with a
1600mm bore contains the statement:

canonBore = 1600;

and you do a global search-and-replace with 20. The canon’s bore just got changed to
2000mm. Usually, test firing a canon designed for a 1600mm shell using a barrel with a
2000mm bore is almost never going to be a happy day at the firing range. The lesson:
You should never do a global search-and-replace in program code. It seems global
replace will always come back to bite you in the butt later on.

Array Definitions

Also near the top of the program you’ll see the definition and initialization of an array
that begins with:

char letterTable[] = { // Morse coding
 0b101, // A
 0b11000, // B

QRPp Oct. 201673

An array is nothing more that a group of identical data types collected under a single
variable name. The variable letterTable[] is a char array that holds binary values that
are used to represent letters of the alphabet. While you could use letterTable[26] in
the definition (note the element count is supplied here but not in the program code),
you can omit the size parameter when you have an initialization list because the
compiler is really good at counting things, so it knows how many elements it needs to
make room for in memory.

As you probably know, the letter ‘A’ is dit-dah (.-) in Morse code. We are using a
coding algorithm that says: starting with the most significant bit, search for the first
binary digit that has the value 1. You also probably know that each memory byte
consists of eight binary digits, called bits. (Did you know that 4 bits is called a nibble?
You’d be surprised how rarely that piece of information comes up at a cocktail party.)

Actually, the binary value we’ve assigned to the first element of the array is
0b00000101. Reading from left to right (i.e., most significant bit (msb) to least
significant bit (lsb)), the 0b tells the compiler that we are representing this number in
binary (i.e., base 2) rather than the default representation (i.e., decimal, or base 10).
Because each char data type uses 8 bits for storage, we are assigning the next 5 bits
with the value 0. However, since those bits are zero, the compiler is just as happy with
0b101 as with 0b00000101. Now, suppose we say: When you find the first 1 digit, throw
it away. We are just using that first 1 bit as a marker, or sentinel, to mark the start of the
real data. Once you’ve tossed that leading 1 bit away, interpret each 0 bit as a dit and
each 1 bit as a dah.

So, let’s look at the first couple of elements in the array:

0b101 becomes01 becomesdit-dah A

0b11000 becomes1000 becomesdah-dit-dit-dit B

ob11010 becomes1010 becomesdah-dit-dah-dit C

and so on. If you look at some alternatives for coding Morse code, often you will often
see the letter A stored as .-, and the digit 0 as - - - - -. Storing each Morse symbol as a
small string means every period and dash uses one char (i.e., 1 byte). With the
numbers, each requires 6 bytes of storage (don’t forget the NULL character at the end
of each string!) Punctuation characters are even worse. However, our algorithm only
uses 1 byte for each Morse symbol regardless of whether it’s alpha, numeric, or
punctuation. Think about it...

Now that you’ve thought about it, the process I just described is done by the
SendCode() function. I’ve repeated it here with a few more comments:

void SendCode(char code)
{
 int i;

 for (i = 7; i >= 0; i—) // Start with MSB, 7, and work down to a 1 bit

QRPp Oct. 2016 74

 if (code & (1 << i)) // Did you find the 1 bit?
 break; // Yep...get outta here...

 for (i—; i >= 0; i—) { // Now start looking for...
 if (code & (1 << i)) // ...1 bits or...
 dah();
 else
 dit(); // ...0 bits
 }
 lspace(); // Add in a letter space
}

The first for loop starts with the most significant bit, bit 7, and performs a logical AND
on the binary coded number after setting the ith bit to 1 in the logic mask. The ‘<<‘
operator is the left shift operator and it has the effect of setting the ith bit to logic 1.
The logic AND operator, &, performs a logical AND with the binary number of code to
figure out whether it’s read a 1 bit or not. If we are looking at the letter ‘A’, 00000101,
the first for loop spins through bits 7-2 before it finds the 1 bit in position 2. It then
breaks out of the first for loop with i = 2.

The second for loop first decrements i (expression1 in the for loop, or i—) then sees if
the next character is a 0 after the bit masking AND operation on code, so it sends a dit
by a call to the cleverly-named function dit(). On the next iteration of the loop, it will
see the 1 and send a dah via the call to dah().

I really don’t want to take the time to discuss bit shifting and logic masking. A good
introductory programming book on C with such details is Beginning C for Arduino, 2nd

edition. (In the spirit of full disclosure, I am biased about this book.) You can also get
details by Googling bit shifting in C and truth tables in C.

Much of the rest of the code uses things we discussed in earlier programs. If you run
the program and type in a message that is longer than the screen width, the code
begins to horizontally scroll the message. This section of code would benefit from
some explanation because horizontal scrolling is a common need when using LCD
displays.

Horizontal Scrolling

The ShowChar() function is responsible for horizontal scrolling. The following code
fragment controls the scrolling:

 if (index < SCREENWIDTH) { // Have we shown less than SCREENWIDTH
chars?
 if (s[index] < 32) // Yes, so is it a non-printing character?
 return; // Yes...go home
 lcd.setCursor(index, 0); // Nope...so display it.

QRPp Oct. 201675

 lcd.print(s[index++]);
 } else { // Yep...more than SCREENWIDTH chars
 memcpy(temp, &s[index - SCREENWIDTH], SCREENWIDTH);
 temp[SCREENWIDTH] = ‘\0’;
 lcd.setCursor(0, 0);
 lcd.print(temp);
 index++;
 }
The if test checks to see if we even need to worry about scrolling yet. If not, we check
to make sure it’s a character than can be displayed. (ASCII codes below 32 are non-
printing.) If it can’t be displayed, program control returns to the place where
ShowChar() was called from. If it is a printable character, we display it and return to
the caller.

The index++ expression is called a post-increment operation. For example, suppose
index is 5 when we reach this statement:

 lcd.print(s[index++]);

what this means is that we want to send element position 5 to the LCD display:

 lcd.print(s[5]);

Remember that this is actually the 6th character in s[] because arrays start counting
with 0. So, the code fetches that character and sends it to the display. Then the code
increments index to 6. Therefore, a post-increment uses the current value of a variable
and, after it is used in the expression, it increments it. Guess what ++index does? How
‘bout index— and index? All of these operators are just a shorthand way of doing
something. For example:

index++;
is the same as

index = index + 1;
You can probably figure the other ones out, too.

The memcpy() function

Now comes the tricky part; the use of the memcpy() function. The mem*() family of
string processing functions are freely available for use as part of the IDE. For the most
part, these functions are used so often they are library routines written in hand-
tweaked assembler code and are about as fast and memory-efficient as you can make
them. They are worth learning about. More details can be found at:

http://www.tutorialspoint.com/c_standard_library/string_h.htm

If you look at the signature for the memcpy() function, you will find:

QRPp Oct. 2016 76

void *memcpy(void *dest, const void *src, size_n t)

Overlooking all of the confusing parts of the signature, what is says is: Grab t bytes of
data starting at the memory address associated with src (the data source) and copy
those bytes to the memory address associated with dest (the destination address). In
other words, the function is a block copy from one location in memory to another
memory location, moving t bytes of data.

Suppose you type the message When in the course of human events into the msg[]
array. The display will eventually look like:

WHEN IN THE COUR

At this point, the LCD display is full. Now what? Keep in mind that the ‘W’ is at
memory address msg[0] and the ‘R’ is at msg[15] so the display has every text cell
filled in. Now look at the code for scrolling. The memcpy() function is written:

memcpy(temp, &s[index - SCREENWIDTH], SCREENWIDTH);

The temp[] variable is just a temporary string array we are using. Anytime you use a
string name without brackets (i.e., [and]), it’s the same as using the memory address
of the zeroth element of that array. So temp in the statement above is the same as
writing &temp[0]. The ‘&’ operator in this context means address of, so writing
&temp[0] means you want to use the memory address of the first element in the array.
In fact, you could substitute &temp[0] in the code and it will work exactly as before.

Now, let’s figure out what we’re looking at. We have displayed the first 16 characters
of the message, but want to display the 17th character. Because index is now 17, we
want to display the ‘S’ in the message. This means that we have:

memcpy(temp, &s[index - SCREENWIDTH], SCREENWIDTH);
which is

memcpy(temp, &s[17 - 16], 16);

which reduces to

memcpy(temp, &s[1], 16);

which says we want to copy 16 characters starting with the memory address of msg[1]
(not zero!) into temp. So, what this says is to copy 16 bytes from msg[] starting with
the memory address of the ‘H’ in WHEN . When memcpy() finishes, this changes the
display to:

HEN IN THE COURS

In other words, we have slid the message down by one character and let the first

QRPp Oct. 201677

character on the display fall off the left edge of the display, thus showing the next new
character on the right edge of the screen. If you think about it, the LCD display acts
like a 16-character wide window that we are sliding over the message as each letter is
sent in Morse code.

Spend some time with this program, because it is probably one of the trickiest we will
use. Don’t be afraid to add Serial.print() messages in the code if you want to inspect
the value of a variable at some point in time. It’s a great way to learn! Also, if you have
some small speakers that don’t require much power (or headphones, earbuds), you
could modify the circuit to use those instead. If you want to experiment, look at the
Tone library:

https://code.google.com/archive/p/rogue-code/wikis/ToneLibraryDocumentation.wiki

make sure you read their warnings about connecting audio devices before you start
experimenting.

EDITORS NOTE: All of the program code is now on the norcalqrp user group on
yahoo groups. It is in the file section labeled “Arduino for the Terrified”. This should
have been placed there from the beginning. It was not due to my decision. Jack
wasn’t the hold up, it was me. I thought that it would be more conduicive to learning if
people typed in the program. Bad decision. Doug, KI6DS

